Step
*
of Lemma
p-adic-inv-lemma
∀p:{p:{2...}| prime(p)} . ∀a:{a:p-adics(p)| ¬((a 1) = 0 ∈ ℤ)} . ∀n:ℕ+. (∃c:ℕp^n [((c * (a n)) ≡ 1 mod p^n)])
BY
{ Extract of Obid: p-adic-inv-lemma1
not unfolding sign absval exp remainder
finishing with Auto
normalizes to:
λp,a,n. let x,y = letrec rec(p)=λq.if p=0
then <q, 0, 1, 1, 1, Ax, Ax, Ax>
else let x,y = divrem(q; p)
in eval r = y in
let g,t = rec r p
in let a,b,x1,y1,_,_,_@0 = t in
eval q' = x in
eval b' = (b * q') + a in
eval x' = y1 - x1 * q' in
<g, b, b', x', x1, Ax, Ax, Ax> in
rec(|a n|)
|p^n|
in let x1,x2,x3,x4,x5,x5,y = y in
eval r = sign(a n) * x3 rem p^n in
if (r) < (0) then |p^n| + r else r }
Latex:
Latex:
\mforall{}p:\{p:\{2...\}| prime(p)\} . \mforall{}a:\{a:p-adics(p)| \mneg{}((a 1) = 0)\} . \mforall{}n:\mBbbN{}\msupplus{}.
(\mexists{}c:\mBbbN{}p\^{}n [((c * (a n)) \mequiv{} 1 mod p\^{}n)])
By
Latex:
Extract of Obid: p-adic-inv-lemma1
not unfolding sign absval exp remainder
finishing with Auto
normalizes to:
\mlambda{}p,a,n. let x,y = letrec rec(p)=\mlambda{}q.if p=0
then <q, 0, 1, 1, 1, Ax, Ax, Ax>
else let x,y = divrem(q; p)
in eval r = y in
let g,t = rec r p
in let a,b,x1,y1,$_{}$,$_\mbackslash{}ff7\000Cb}$,$_{@0}$ = t in
eval q' = x in
eval b' = (b * q') + a in
eval x' = y1 - x1 * q' in
<g, b, b', x', x1, Ax, Ax, Ax> in
rec(|a n|)
|p\^{}n|
in let x1,x2,x3,x4,x5,x5,y = y in
eval r = sign(a n) * x3 rem p\^{}n in
if (r) < (0) then |p\^{}n| + r else r
Home
Index