Nuprl Lemma : p-reduce-0
∀p:ℕ+. ∀n:ℕ.  (0 mod(p^n) = 0 ∈ ℤ)
Proof
Definitions occuring in Statement : 
p-reduce: i mod(p^n), 
nat_plus: ℕ+, 
nat: ℕ, 
all: ∀x:A. B[x], 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
p-reduce: i mod(p^n), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
prop: ℙ, 
nat_plus: ℕ+
Lemmas referenced : 
modulus_base, 
exp_wf_nat_plus, 
false_wf, 
exp-positive-stronger, 
lelt_wf, 
exp_wf2, 
nat_wf, 
nat_plus_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalRule, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
dependent_functionElimination, 
setElimination, 
rename, 
because_Cache
Latex:
\mforall{}p:\mBbbN{}\msupplus{}.  \mforall{}n:\mBbbN{}.    (0  mod(p\^{}n)  =  0)
Date html generated:
2018_05_21-PM-03_18_00
Last ObjectModification:
2018_05_19-AM-08_08_58
Theory : rings_1
Home
Index