Nuprl Lemma : p-reduce-0

p:ℕ+. ∀n:ℕ.  (0 mod(p^n) 0 ∈ ℤ)


Proof




Definitions occuring in Statement :  p-reduce: mod(p^n) nat_plus: + nat: all: x:A. B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] p-reduce: mod(p^n) uall: [x:A]. B[x] member: t ∈ T int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: nat_plus: +
Lemmas referenced :  modulus_base exp_wf_nat_plus false_wf exp-positive-stronger lelt_wf exp_wf2 nat_wf nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis dependent_set_memberEquality natural_numberEquality independent_pairFormation dependent_functionElimination setElimination rename because_Cache

Latex:
\mforall{}p:\mBbbN{}\msupplus{}.  \mforall{}n:\mBbbN{}.    (0  mod(p\^{}n)  =  0)



Date html generated: 2018_05_21-PM-03_18_00
Last ObjectModification: 2018_05_19-AM-08_08_58

Theory : rings_1


Home Index