Nuprl Lemma : exp-positive-stronger

n:ℕ. ∀x:ℕ+.  0 < x^n


Proof




Definitions occuring in Statement :  exp: i^n nat_plus: + nat: less_than: a < b all: x:A. B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: nat_plus: + decidable: Dec(P) or: P ∨ Q exp: i^n less_than: a < b squash: T less_than': less_than'(a;b) true: True
Lemmas referenced :  exp-positive primrec0_lemma nat_wf int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf subtract_wf decidable__le le_wf nat_plus_wf nat_plus_properties exp_wf2 member-less_than less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt nat_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename introduction intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination dependent_set_memberEquality because_Cache unionElimination imageMemberEquality baseClosed

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}x:\mBbbN{}\msupplus{}.    0  <  x\^{}n



Date html generated: 2016_05_14-PM-04_26_51
Last ObjectModification: 2016_01_14-PM-11_36_24

Theory : num_thy_1


Home Index