Nuprl Lemma : member-less_than

[a,b:ℤ].  Ax ∈ a < supposing a < b


Proof




Definitions occuring in Statement :  less_than: a < b uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T int: axiom: Ax
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a less_than: a < b squash: T and: P ∧ Q cand: c∧ B prop:
Lemmas referenced :  less_than_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution imageElimination productElimination thin hypothesis independent_pairFormation hypothesisEquality sqequalRule imageMemberEquality baseClosed axiomEquality equalityTransitivity equalitySymmetry lemma_by_obid isectElimination isect_memberEquality because_Cache intEquality

Latex:
\mforall{}[a,b:\mBbbZ{}].    Ax  \mmember{}  a  <  b  supposing  a  <  b



Date html generated: 2016_05_13-PM-03_20_09
Last ObjectModification: 2016_01_14-PM-04_35_00

Theory : basic_types


Home Index