Nuprl Lemma : p-sep-irrefl
∀[p:ℕ+]. ∀[x:p-adics(p)].  (¬p-sep(x;x))
Proof
Definitions occuring in Statement : 
p-sep: p-sep(x;y), 
p-adics: p-adics(p), 
nat_plus: ℕ+, 
uall: ∀[x:A]. B[x], 
not: ¬A
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
p-sep: p-sep(x;y), 
exists: ∃x:A. B[x], 
prop: ℙ, 
nat_plus: ℕ+, 
p-adics: p-adics(p), 
subtype_rel: A ⊆r B, 
int_seg: {i..j-}
Lemmas referenced : 
p-sep_wf, 
p-adics_wf, 
nat_plus_wf, 
int_seg_wf, 
exp_wf2, 
nat_plus_subtype_nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
sqequalHypSubstitution, 
productElimination, 
independent_functionElimination, 
voidElimination, 
because_Cache, 
hypothesis, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
setElimination, 
rename, 
isect_memberEquality, 
applyEquality, 
natural_numberEquality
Latex:
\mforall{}[p:\mBbbN{}\msupplus{}].  \mforall{}[x:p-adics(p)].    (\mneg{}p-sep(x;x))
Date html generated:
2018_05_21-PM-03_23_18
Last ObjectModification:
2018_05_19-AM-08_21_35
Theory : rings_1
Home
Index