Nuprl Lemma : pa-minus_wf

[p:{2...}]. ∀[x:padic(p)].  (pa-minus(p;x) ∈ padic(p))


Proof




Definitions occuring in Statement :  pa-minus: pa-minus(p;x) padic: padic(p) int_upper: {i...} uall: [x:A]. B[x] member: t ∈ T natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T pa-minus: pa-minus(p;x) nat_plus: + int_upper: {i...} le: A ≤ B and: P ∧ Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q implies:  Q false: False prop: uiff: uiff(P;Q) uimplies: supposing a subtype_rel: A ⊆B top: Top less_than': less_than'(a;b) true: True
Lemmas referenced :  bpa-norm_wf_padic decidable__lt false_wf not-lt-2 add_functionality_wrt_le add-commutes zero-add le-add-cancel less_than_wf bpa-minus_wf padic_subtype_basic-padic padic_wf int_upper_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin dependent_set_memberEquality setElimination rename because_Cache hypothesis productElimination dependent_functionElimination natural_numberEquality hypothesisEquality unionElimination independent_pairFormation lambdaFormation voidElimination independent_functionElimination independent_isectElimination applyEquality lambdaEquality isect_memberEquality voidEquality intEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[p:\{2...\}].  \mforall{}[x:padic(p)].    (pa-minus(p;x)  \mmember{}  padic(p))



Date html generated: 2018_05_21-PM-03_27_23
Last ObjectModification: 2018_05_19-AM-08_24_19

Theory : rings_1


Home Index