Nuprl Lemma : quot_ring_car_elim_b

r:CRng. ∀a:Ideal(r){i}. ∀d:detach_fun(|r|;a).
  ((∀w:|r|. SqStable(a w))  (∀u,v:|r|.  ([u]{|r d|} [v]{|r d|} ∈ |r d| ⇐⇒ (u +r (-r v)))))


Proof




Definitions occuring in Statement :  quot_ring: d ideal: Ideal(r){i} crng: CRng rng_minus: -r rng_plus: +r rng_car: |r| detach_fun: detach_fun(T;A) type_inj: [x]{T} sq_stable: SqStable(P) infix_ap: y all: x:A. B[x] iff: ⇐⇒ Q implies:  Q apply: a equal: t ∈ T
Definitions unfolded in proof :  type_inj: [x]{T}
Lemmas referenced :  quot_ring_car_elim_a
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lemma_by_obid

Latex:
\mforall{}r:CRng.  \mforall{}a:Ideal(r)\{i\}.  \mforall{}d:detach\_fun(|r|;a).
    ((\mforall{}w:|r|.  SqStable(a  w))  {}\mRightarrow{}  (\mforall{}u,v:|r|.    ([u]\{|r  /  d|\}  =  [v]\{|r  /  d|\}  \mLeftarrow{}{}\mRightarrow{}  a  (u  +r  (-r  v)))))



Date html generated: 2016_05_15-PM-00_24_31
Last ObjectModification: 2015_12_27-AM-00_00_24

Theory : rings_1


Home Index