Step
*
2
1
1
of Lemma
quot_ring_sig
1. r : CRng
2. a : |r| ⟶ ℙ
3. a Ideal of r
4. ∀x:|r|. SqStable(a x)
5. d : |r| ⟶ 𝔹
6. ∀x:|r|. (a x
⇐⇒ ↑(d x))
7. Carrier(r/d) ∈ Type
8. x : |r|
9. x1 : |r|
10. ↑(d (x +r (-r x1)))
11. y : |r|
12. y1 : |r|
13. ↑(d (y +r (-r y1)))
⊢ d (x +r (-r y)) = d (x1 +r (-r y1))
BY
{ (BLemma `iff_imp_equal_bool`
THEN Auto
THEN (InstLemma `ideal-detach-equiv` [⌜r⌝;⌜a⌝;⌜d⌝]⋅ THENA Auto)
THEN RepeatFor 2 (D -1)) }
1
1. r : CRng
2. a : |r| ⟶ ℙ
3. a Ideal of r
4. ∀x:|r|. SqStable(a x)
5. d : |r| ⟶ 𝔹
6. ∀x:|r|. (a x
⇐⇒ ↑(d x))
7. Carrier(r/d) ∈ Type
8. x : |r|
9. x1 : |r|
10. ↑(d (x +r (-r x1)))
11. y : |r|
12. y1 : |r|
13. ↑(d (y +r (-r y1)))
14. ↑(d (x +r (-r y)))
15. Refl(|r|;x,y.↑(d (x +r (-r y))))
16. Sym(|r|;x,y.↑(d (x +r (-r y))))
17. Trans(|r|;x,y.↑(d (x +r (-r y))))
⊢ ↑(d (x1 +r (-r y1)))
2
1. r : CRng
2. a : |r| ⟶ ℙ
3. a Ideal of r
4. ∀x:|r|. SqStable(a x)
5. d : |r| ⟶ 𝔹
6. ∀x:|r|. (a x
⇐⇒ ↑(d x))
7. Carrier(r/d) ∈ Type
8. x : |r|
9. x1 : |r|
10. ↑(d (x +r (-r x1)))
11. y : |r|
12. y1 : |r|
13. ↑(d (y +r (-r y1)))
14. ↑(d (x1 +r (-r y1)))
15. Refl(|r|;x,y.↑(d (x +r (-r y))))
16. Sym(|r|;x,y.↑(d (x +r (-r y))))
17. Trans(|r|;x,y.↑(d (x +r (-r y))))
⊢ ↑(d (x +r (-r y)))
Latex:
Latex:
1. r : CRng
2. a : |r| {}\mrightarrow{} \mBbbP{}
3. a Ideal of r
4. \mforall{}x:|r|. SqStable(a x)
5. d : |r| {}\mrightarrow{} \mBbbB{}
6. \mforall{}x:|r|. (a x \mLeftarrow{}{}\mRightarrow{} \muparrow{}(d x))
7. Carrier(r/d) \mmember{} Type
8. x : |r|
9. x1 : |r|
10. \muparrow{}(d (x +r (-r x1)))
11. y : |r|
12. y1 : |r|
13. \muparrow{}(d (y +r (-r y1)))
\mvdash{} d (x +r (-r y)) = d (x1 +r (-r y1))
By
Latex:
(BLemma `iff\_imp\_equal\_bool`
THEN Auto
THEN (InstLemma `ideal-detach-equiv` [\mkleeneopen{}r\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}d\mkleeneclose{}]\mcdot{} THENA Auto)
THEN RepeatFor 2 (D -1))
Home
Index