Step
*
of Lemma
rng_times_nat_op_r
∀[r:Rng]. ∀[a,b:|r|]. ∀[n:ℕ]. (((n ⋅r b) * a) = (n ⋅r (b * a)) ∈ |r|)
BY
{ ((UnivCD) THENA Auto)
THEN RepUnfolds ``rng_nat_op mon_nat_op nat_op`` 0
THEN Repeat (Folds ``mon_itop rng_sum`` 0)
}
1
1. r : Rng
2. a : |r|
3. b : |r|
4. n : ℕ
⊢ ((Σ(r) 0 ≤ i < n. b) * a) = (Σ(r) 0 ≤ i < n. b * a) ∈ |r|
Latex:
Latex:
\mforall{}[r:Rng]. \mforall{}[a,b:|r|]. \mforall{}[n:\mBbbN{}]. (((n \mcdot{}r b) * a) = (n \mcdot{}r (b * a)))
By
Latex:
((UnivCD) THENA Auto)
THEN RepUnfolds ``rng\_nat\_op mon\_nat\_op nat\_op`` 0
THEN Repeat (Folds ``mon\_itop rng\_sum`` 0)
Home
Index