Step
*
1
of Lemma
rng_times_sum_l
1. r : Rng
2. a : ℤ
⊢ ∀[b:ℤ]
∀[E:{a..b-} ⟶ |r|]. ∀[u:|r|]. ((u * (Σ(r) a ≤ j < b. E[j])) = (Σ(r) a ≤ j < b. u * E[j]) ∈ |r|) supposing a ≤ b
BY
{ ((BLemma `int_le_to_int_upper_uniform`) THENA Auto)
THEN ((BLemma `int_upper_ind_uniform`) THENA Auto)
THEN ((UnivCD) THENA Auto) }
1
1. r : Rng
2. a : ℤ
3. b : {a...}
4. ∀[j:{a..b-}]. ∀[E:{a..j-} ⟶ |r|]. ∀[u:|r|]. ((u * (Σ(r) a ≤ j < j. E[j])) = (Σ(r) a ≤ j < j. u * E[j]) ∈ |r|)
5. E : {a..b-} ⟶ |r|
6. u : |r|
⊢ (u * (Σ(r) a ≤ j < b. E[j])) = (Σ(r) a ≤ j < b. u * E[j]) ∈ |r|
Latex:
Latex:
1. r : Rng
2. a : \mBbbZ{}
\mvdash{} \mforall{}[b:\mBbbZ{}]
\mforall{}[E:\{a..b\msupminus{}\} {}\mrightarrow{} |r|]. \mforall{}[u:|r|]. ((u * (\mSigma{}(r) a \mleq{} j < b. E[j])) = (\mSigma{}(r) a \mleq{} j < b. u * E[j]))
supposing a \mleq{} b
By
Latex:
((BLemma `int\_le\_to\_int\_upper\_uniform`) THENA Auto)
THEN ((BLemma `int\_upper\_ind\_uniform`) THENA Auto)
THEN ((UnivCD) THENA Auto)
Home
Index