Nuprl Lemma : rng_when_when
∀[r:Rng]. ∀[b,b':𝔹]. ∀[p:|r|].  ((when b. when b'. p) = (when b ∧b b'. p) ∈ |r|)
Proof
Definitions occuring in Statement : 
rng_when: rng_when, 
rng: Rng
, 
rng_car: |r|
, 
band: p ∧b q
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
grp: Group{i}
, 
rng_when: rng_when, 
add_grp_of_rng: r↓+gp
, 
grp_car: |g|
, 
pi1: fst(t)
, 
rng: Rng
Lemmas referenced : 
mon_when_when, 
add_grp_of_rng_wf_a, 
grp_wf, 
rng_car_wf, 
bool_wf, 
rng_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
sqequalRule, 
isect_memberEquality, 
axiomEquality
Latex:
\mforall{}[r:Rng].  \mforall{}[b,b':\mBbbB{}].  \mforall{}[p:|r|].    ((when  b.  when  b'.  p)  =  (when  b  \mwedge{}\msubb{}  b'.  p))
Date html generated:
2016_05_15-PM-00_29_12
Last ObjectModification:
2015_12_26-PM-11_58_18
Theory : rings_1
Home
Index