Nuprl Lemma : rng_when_when
∀[r:Rng]. ∀[b,b':𝔹]. ∀[p:|r|]. ((when b. when b'. p) = (when b ∧b b'. p) ∈ |r|)
Proof
Definitions occuring in Statement :
rng_when: rng_when,
rng: Rng
,
rng_car: |r|
,
band: p ∧b q
,
bool: 𝔹
,
uall: ∀[x:A]. B[x]
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
subtype_rel: A ⊆r B
,
grp: Group{i}
,
rng_when: rng_when,
add_grp_of_rng: r↓+gp
,
grp_car: |g|
,
pi1: fst(t)
,
rng: Rng
Lemmas referenced :
mon_when_when,
add_grp_of_rng_wf_a,
grp_wf,
rng_car_wf,
bool_wf,
rng_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
applyEquality,
lambdaEquality,
setElimination,
rename,
sqequalRule,
isect_memberEquality,
axiomEquality
Latex:
\mforall{}[r:Rng]. \mforall{}[b,b':\mBbbB{}]. \mforall{}[p:|r|]. ((when b. when b'. p) = (when b \mwedge{}\msubb{} b'. p))
Date html generated:
2016_05_15-PM-00_29_12
Last ObjectModification:
2015_12_26-PM-11_58_18
Theory : rings_1
Home
Index