Nuprl Lemma : set_leq_transitivity
∀[s:QOSet]. ∀[a,b,c:|s|].  (a ≤ c) supposing ((b ≤ c) and (a ≤ b))
Proof
Definitions occuring in Statement : 
qoset: QOSet
, 
set_leq: a ≤ b
, 
set_car: |p|
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
upreorder: UniformPreorder(T;x,y.R[x; y])
, 
and: P ∧ Q
, 
utrans: UniformlyTrans(T;x,y.E[x; y])
, 
urefl: UniformlyRefl(T;x,y.E[x; y])
, 
implies: P 
⇒ Q
, 
set_leq: a ≤ b
, 
infix_ap: x f y
, 
qoset: QOSet
, 
dset: DSet
, 
prop: ℙ
, 
uimplies: b supposing a
, 
guard: {T}
Lemmas referenced : 
qoset_properties, 
assert_witness, 
set_le_wf, 
set_leq_wf, 
set_car_wf, 
qoset_wf
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
sqequalRule, 
isect_memberEquality, 
lambdaEquality, 
dependent_functionElimination, 
applyEquality, 
setElimination, 
rename, 
independent_functionElimination, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[s:QOSet].  \mforall{}[a,b,c:|s|].    (a  \mleq{}  c)  supposing  ((b  \mleq{}  c)  and  (a  \mleq{}  b))
Date html generated:
2016_05_15-PM-00_04_40
Last ObjectModification:
2015_12_26-PM-11_28_21
Theory : sets_1
Home
Index