Nuprl Lemma : is_ufm_wf
∀g:IMonoid. (IsUFM(g) ∈ ℙ)
Proof
Definitions occuring in Statement : 
is_ufm: IsUFM(g), 
prop: ℙ, 
all: ∀x:A. B[x], 
member: t ∈ T, 
imon: IMonoid
Definitions unfolded in proof : 
is_ufm: IsUFM(g), 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
imon: IMonoid, 
so_lambda: λ2x.t[x], 
implies: P ⇒ Q, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
so_apply: x[s], 
uimplies: b supposing a, 
matom_ty: Atom{g}
Lemmas referenced : 
all_wf, 
grp_car_wf, 
not_wf, 
munit_wf, 
exists_uni_upto_wf, 
list_wf, 
matom_ty_wf, 
permr_massoc_rel_wf, 
subtype_rel_dep_function, 
subtype_rel_list, 
subtype_rel_self, 
equal_wf, 
mon_reduce_wf, 
imon_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
functionEquality, 
dependent_functionElimination, 
because_Cache, 
applyEquality, 
instantiate, 
cumulativity, 
universeEquality, 
independent_isectElimination
Latex:
\mforall{}g:IMonoid.  (IsUFM(g)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_16-AM-07_45_21
Last ObjectModification:
2015_12_28-PM-05_53_34
Theory : factor_1
Home
Index