Nuprl Lemma : posint_unit_dec
∀a:|<ℤ+,*>|. Dec(<ℤ+,*>-unit(a))
Proof
Definitions occuring in Statement : 
posint_mul_mon: <ℤ+,*>, 
munit: g-unit(u), 
decidable: Dec(P), 
all: ∀x:A. B[x], 
grp_car: |g|
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
abmonoid: AbMon, 
mon: Mon, 
posint_mul_mon: <ℤ+,*>, 
grp_car: |g|, 
pi1: fst(t), 
nat_plus: ℕ+, 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
decidable_functionality, 
munit_wf, 
posint_mul_mon_wf, 
abmonoid_wf, 
equal_wf, 
grp_car_wf, 
posint_munit_elim, 
decidable__int_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_functionElimination, 
hypothesis, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
hypothesisEquality, 
sqequalRule, 
intEquality, 
because_Cache, 
natural_numberEquality, 
independent_functionElimination, 
productElimination
Latex:
\mforall{}a:|<\mBbbZ{}\msupplus{},*>|.  Dec(<\mBbbZ{}\msupplus{},*>-unit(a))
 Date html generated: 
2016_05_16-AM-07_45_47
 Last ObjectModification: 
2015_12_28-PM-05_53_29
Theory : factor_1
Home
Index