Nuprl Lemma : null_mset_wf_f
∀s:DSet. (0{s} ∈ FiniteSet{s})
Proof
Definitions occuring in Statement : 
finite_set: FiniteSet{s}
, 
null_mset: 0{s}
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
dset: DSet
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
finite_set: FiniteSet{s}
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
mset_count: x #∈ a
, 
count: a #∈ as
, 
mon_for: For{g} x ∈ as. f[x]
, 
for: For{T,op,id} x ∈ as. f[x]
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
map: map(f;as)
, 
null_mset: 0{s}
, 
nil: []
, 
it: ⋅
, 
grp_id: e
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
int_add_grp: <ℤ+>
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
dset: DSet
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
Lemmas referenced : 
null_mset_wf, 
istype-false, 
set_car_wf, 
istype-le, 
mset_count_wf, 
dset_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
dependent_set_memberEquality_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
independent_pairFormation, 
natural_numberEquality, 
universeIsType, 
isectElimination, 
setElimination, 
rename, 
functionIsType, 
because_Cache, 
applyEquality, 
lambdaEquality_alt, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}s:DSet.  (0\{s\}  \mmember{}  FiniteSet\{s\})
Date html generated:
2019_10_16-PM-01_06_51
Last ObjectModification:
2018_11_27-AM-10_31_00
Theory : mset
Home
Index