Nuprl Lemma : null_mset_wf_f

s:DSet. (0{s} ∈ FiniteSet{s})


Proof




Definitions occuring in Statement :  finite_set: FiniteSet{s} null_mset: 0{s} all: x:A. B[x] member: t ∈ T dset: DSet
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T finite_set: FiniteSet{s} le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) mset_count: #∈ a count: #∈ as mon_for: For{g} x ∈ as. f[x] for: For{T,op,id} x ∈ as. f[x] reduce: reduce(f;k;as) list_ind: list_ind map: map(f;as) null_mset: 0{s} nil: [] it: grp_id: e pi1: fst(t) pi2: snd(t) int_add_grp: <ℤ+> false: False not: ¬A implies:  Q uall: [x:A]. B[x] dset: DSet subtype_rel: A ⊆B nat:
Lemmas referenced :  null_mset_wf istype-false set_car_wf istype-le mset_count_wf dset_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt dependent_set_memberEquality_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis sqequalRule independent_pairFormation natural_numberEquality universeIsType isectElimination setElimination rename functionIsType because_Cache applyEquality lambdaEquality_alt inhabitedIsType equalityTransitivity equalitySymmetry

Latex:
\mforall{}s:DSet.  (0\{s\}  \mmember{}  FiniteSet\{s\})



Date html generated: 2019_10_16-PM-01_06_51
Last ObjectModification: 2018_11_27-AM-10_31_00

Theory : mset


Home Index