Nuprl Lemma : comb_for_mk_perm_wf_a
λT,f,b,z. mk_perm(f;b) ∈ T:Type ⟶ f:(T ⟶ T) ⟶ b:(T ⟶ T) ⟶ (↓InvFuns(T;T;f;b)) ⟶ Perm(T)
Proof
Definitions occuring in Statement : 
mk_perm: mk_perm(f;b)
, 
perm: Perm(T)
, 
inv_funs: InvFuns(A;B;f;g)
, 
squash: ↓T
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T
, 
squash: ↓T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
Lemmas referenced : 
mk_perm_wf_a, 
squash_wf, 
inv_funs_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality_alt, 
sqequalHypSubstitution, 
imageElimination, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
isectElimination, 
inhabitedIsType, 
functionIsType, 
universeEquality
Latex:
\mlambda{}T,f,b,z.  mk\_perm(f;b)  \mmember{}  T:Type  {}\mrightarrow{}  f:(T  {}\mrightarrow{}  T)  {}\mrightarrow{}  b:(T  {}\mrightarrow{}  T)  {}\mrightarrow{}  (\mdownarrow{}InvFuns(T;T;f;b))  {}\mrightarrow{}  Perm(T)
Date html generated:
2019_10_16-PM-00_58_44
Last ObjectModification:
2018_10_08-AM-09_46_34
Theory : perms_1
Home
Index