Nuprl Lemma : comb_for_mk_perm_wf_a

λT,f,b,z. mk_perm(f;b) ∈ T:Type ⟶ f:(T ⟶ T) ⟶ b:(T ⟶ T) ⟶ (↓InvFuns(T;T;f;b)) ⟶ Perm(T)


Proof




Definitions occuring in Statement :  mk_perm: mk_perm(f;b) perm: Perm(T) inv_funs: InvFuns(A;B;f;g) squash: T member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  member: t ∈ T squash: T all: x:A. B[x] implies:  Q uall: [x:A]. B[x] prop:
Lemmas referenced :  mk_perm_wf_a squash_wf inv_funs_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality_alt sqequalHypSubstitution imageElimination cut introduction extract_by_obid dependent_functionElimination thin hypothesisEquality independent_functionElimination hypothesis equalityTransitivity equalitySymmetry universeIsType isectElimination inhabitedIsType functionIsType universeEquality

Latex:
\mlambda{}T,f,b,z.  mk\_perm(f;b)  \mmember{}  T:Type  {}\mrightarrow{}  f:(T  {}\mrightarrow{}  T)  {}\mrightarrow{}  b:(T  {}\mrightarrow{}  T)  {}\mrightarrow{}  (\mdownarrow{}InvFuns(T;T;f;b))  {}\mrightarrow{}  Perm(T)



Date html generated: 2019_10_16-PM-00_58_44
Last ObjectModification: 2018_10_08-AM-09_46_34

Theory : perms_1


Home Index