Nuprl Definition : alg_p
AlgP(r;a) ==
  rng_p(a↓rg)
  ∧ IsAction(|r|;*;1;a.car;a.act)
  ∧ IsBilinear(|r|;a.car;a.car;+r;a.plus;a.plus;a.act)
  ∧ (∀p:|r|. Dist1op2opLR(a.car;a.act p;a.times))
Definitions occuring in Statement : 
rng_p: rng_p(r)
, 
rng_of_alg: a↓rg
, 
alg_act: a.act
, 
alg_times: a.times
, 
alg_plus: a.plus
, 
alg_car: a.car
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
apply: f a
, 
rng_one: 1
, 
rng_times: *
, 
rng_plus: +r
, 
rng_car: |r|
, 
dist_1op_2op_lr: Dist1op2opLR(A;1op;2op)
, 
action_p: IsAction(A;x;e;S;f)
, 
bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f)
Definitions occuring in definition : 
rng_p: rng_p(r)
, 
rng_of_alg: a↓rg
, 
action_p: IsAction(A;x;e;S;f)
, 
rng_times: *
, 
rng_one: 1
, 
and: P ∧ Q
, 
bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f)
, 
rng_plus: +r
, 
alg_plus: a.plus
, 
all: ∀x:A. B[x]
, 
rng_car: |r|
, 
dist_1op_2op_lr: Dist1op2opLR(A;1op;2op)
, 
alg_car: a.car
, 
apply: f a
, 
alg_act: a.act
, 
alg_times: a.times
Latex:
AlgP(r;a)  ==
    rng\_p(a\mdownarrow{}rg)
    \mwedge{}  IsAction(|r|;*;1;a.car;a.act)
    \mwedge{}  IsBilinear(|r|;a.car;a.car;+r;a.plus;a.plus;a.act)
    \mwedge{}  (\mforall{}p:|r|.  Dist1op2opLR(a.car;a.act  p;a.times))
Date html generated:
2016_05_16-AM-08_13_57
Last ObjectModification:
2015_09_23-AM-09_52_37
Theory : polynom_1
Home
Index