Nuprl Definition : alg_p

AlgP(r;a) ==
  rng_p(a↓rg)
  ∧ IsAction(|r|;*;1;a.car;a.act)
  ∧ IsBilinear(|r|;a.car;a.car;+r;a.plus;a.plus;a.act)
  ∧ (∀p:|r|. Dist1op2opLR(a.car;a.act p;a.times))



Definitions occuring in Statement :  rng_p: rng_p(r) rng_of_alg: a↓rg alg_act: a.act alg_times: a.times alg_plus: a.plus alg_car: a.car all: x:A. B[x] and: P ∧ Q apply: a rng_one: 1 rng_times: * rng_plus: +r rng_car: |r| dist_1op_2op_lr: Dist1op2opLR(A;1op;2op) action_p: IsAction(A;x;e;S;f) bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f)
Definitions occuring in definition :  rng_p: rng_p(r) rng_of_alg: a↓rg action_p: IsAction(A;x;e;S;f) rng_times: * rng_one: 1 and: P ∧ Q bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f) rng_plus: +r alg_plus: a.plus all: x:A. B[x] rng_car: |r| dist_1op_2op_lr: Dist1op2opLR(A;1op;2op) alg_car: a.car apply: a alg_act: a.act alg_times: a.times

Latex:
AlgP(r;a)  ==
    rng\_p(a\mdownarrow{}rg)
    \mwedge{}  IsAction(|r|;*;1;a.car;a.act)
    \mwedge{}  IsBilinear(|r|;a.car;a.car;+r;a.plus;a.plus;a.act)
    \mwedge{}  (\mforall{}p:|r|.  Dist1op2opLR(a.car;a.act  p;a.times))



Date html generated: 2016_05_16-AM-08_13_57
Last ObjectModification: 2015_09_23-AM-09_52_37

Theory : polynom_1


Home Index