Nuprl Lemma : lookup_omral_times_a

g:OCMon. ∀r:CDRng. ∀ps,qs:|omral(g;r)|. ∀z:|g|.
  (((ps ** qs)[z]) x ∈ dom(ps). Σy ∈ dom(qs). (when (x y) =b z. ((ps[x]) (qs[y])))) ∈ |r|)


Proof




Definitions occuring in Statement :  omral_times: ps ** qs omral_dom: dom(ps) omralist: omral(g;r) lookup: as[k] rng_mssum: rng_mssum infix_ap: y all: x:A. B[x] equal: t ∈ T rng_when: rng_when cdrng: CDRng rng_times: * rng_zero: 0 rng_car: |r| oset_of_ocmon: g↓oset ocmon: OCMon grp_op: * grp_eq: =b grp_car: |g| set_car: |p|
Definitions unfolded in proof :  rng_mssum: rng_mssum
Lemmas referenced :  lookup_omral_times
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lemma_by_obid

Latex:
\mforall{}g:OCMon.  \mforall{}r:CDRng.  \mforall{}ps,qs:|omral(g;r)|.  \mforall{}z:|g|.
    (((ps  **  qs)[z])  =  (\mSigma{}x  \mmember{}  dom(ps).  \mSigma{}y  \mmember{}  dom(qs).  (when  (x  *  y)  =\msubb{}  z.  ((ps[x])  *  (qs[y])))))



Date html generated: 2016_05_16-AM-08_25_45
Last ObjectModification: 2015_12_28-PM-06_38_39

Theory : polynom_3


Home Index