Nuprl Lemma : completeInductionFast
P:  . ((n:. ((m:n. (P m))  (P n)))  (n:. (P n)))
Proof
Definitions occuring in Statement : 
int_seg: {i..j}, 
nat: , 
prop: , 
all: x:A. B[x], 
implies: P  Q, 
apply: f a, 
function: x:A  B[x], 
natural_number: $n
Definitions : 
so_lambda: x.t[x], 
member: t  T, 
implies: P  Q, 
prop: , 
nat: , 
all: x:A. B[x], 
so_apply: x[s1;s2], 
int_seg: {i..j}, 
lelt: i  j < k, 
and: P  Q, 
le: A  B, 
not: A, 
false: False, 
so_apply: x[s], 
uall: [x:A]. B[x], 
uimplies: b supposing a, 
guard: {T}
Lemmas : 
le_wf, 
int_seg_wf, 
all_wf, 
nat_wf, 
subtype_rel_dep_function, 
lelt_wf, 
subtype_rel_weakening, 
ext-eq_weakening
\mforall{}P:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}.  ((\mforall{}n:\mBbbN{}.  ((\mforall{}m:\mBbbN{}n.  (P  m))  {}\mRightarrow{}  (P  n)))  {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  (P  n)))
Date html generated:
2013_03_20-AM-09_46_55
Last ObjectModification:
2012_11_27-AM-10_31_58
Home
Index