Nuprl Lemma : new_23_sig_quorum_invariant_fun
∀Cmd:ValueAllType. ∀notify,propose:Atom List. ∀f:new_23_sig_headers_type{i:l}(Cmd;notify;propose). ∀es:EO+(Message(f)).
∀e:E. ∀ni:ℤ × ℤ.
  (no_repeats(Id;snd(new_23_sig_QuorumStateFun(Cmd;notify;propose;f;ni;es;e)))
  ∧ (||snd(new_23_sig_QuorumStateFun(Cmd;notify;propose;f;ni;es;e))||
    = ||fst(new_23_sig_QuorumStateFun(Cmd;notify;propose;f;ni;es;e))||
    ∈ ℤ))
Proof
Definitions occuring in Statement : 
new_23_sig_QuorumStateFun: new_23_sig_QuorumStateFun(Cmd;notify;propose;f;x;es;e), 
new_23_sig_headers_type: new_23_sig_headers_type{i:l}(Cmd;notify;propose), 
Message: Message(f), 
event-ordering+: EO+(Info), 
es-E: E, 
Id: Id, 
no_repeats: no_repeats(T;l), 
length: ||as||, 
list: T List, 
vatype: ValueAllType, 
pi1: fst(t), 
pi2: snd(t), 
all: ∀x:A. B[x], 
and: P ∧ Q, 
product: x:A × B[x], 
int: ℤ, 
atom: Atom, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
cand: A c∧ B, 
subtype_rel: A ⊆r B, 
vatype: ValueAllType, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uimplies: b supposing a, 
top: Top, 
new_23_sig_headers_type: new_23_sig_headers_type{i:l}(Cmd;notify;propose), 
prop: ℙ
Latex:
\mforall{}Cmd:ValueAllType.  \mforall{}notify,propose:Atom  List.  \mforall{}f:new\_23\_sig\_headers\_type\{i:l\}(Cmd;notify;propose).
\mforall{}es:EO+(Message(f)).  \mforall{}e:E.  \mforall{}ni:\mBbbZ{}  \mtimes{}  \mBbbZ{}.
    (no\_repeats(Id;snd(new\_23\_sig\_QuorumStateFun(Cmd;notify;propose;f;ni;es;e)))
    \mwedge{}  (||snd(new\_23\_sig\_QuorumStateFun(Cmd;notify;propose;f;ni;es;e))||
        =  ||fst(new\_23\_sig\_QuorumStateFun(Cmd;notify;propose;f;ni;es;e))||))
Date html generated:
2016_05_17-PM-02_14_59
Last ObjectModification:
2015_12_29-PM-08_06_45
Theory : 2!3!consensus!with!signatures
Home
Index