Nuprl Lemma : new_23_sig_replica_state_mem_fun
∀Cmd:ValueAllType. ∀notify,propose:Atom List. ∀slots:set-sig{i:l}(ℤ).
∀f:new_23_sig_headers_type{i:l}(Cmd;notify;propose). ∀es:EO+(Message(f)). ∀e1,e2:E. ∀n:ℤ. ∀c:Cmd.
  ((e1 <loc e2)
  ⇒ <n, c> ∈ new_23_sig_Proposal(Cmd;notify;propose;f)(e1)
  ⇒ (↑(set-sig-member(slots) n new_23_sig_ReplicaStateFun(Cmd;notify;propose;slots;f;es;e2))))
Proof
Definitions occuring in Statement : 
new_23_sig_ReplicaStateFun: new_23_sig_ReplicaStateFun(Cmd;notify;propose;slots;f;es;e), 
new_23_sig_Proposal: new_23_sig_Proposal(Cmd;notify;propose;f), 
new_23_sig_headers_type: new_23_sig_headers_type{i:l}(Cmd;notify;propose), 
set-sig-member: set-sig-member(s), 
set-sig: set-sig{i:l}(Item), 
Message: Message(f), 
classrel: v ∈ X(e), 
event-ordering+: EO+(Info), 
es-locl: (e <loc e'), 
es-E: E, 
list: T List, 
vatype: ValueAllType, 
assert: ↑b, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
apply: f a, 
pair: <a, b>, 
product: x:A × B[x], 
int: ℤ, 
atom: Atom
Definitions unfolded in proof : 
vatype: ValueAllType, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
set-sig-member: set-sig-member(s), 
record-select: r.x, 
prop: ℙ, 
new_23_sig_headers_type: new_23_sig_headers_type{i:l}(Cmd;notify;propose), 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uimplies: b supposing a
Latex:
\mforall{}Cmd:ValueAllType.  \mforall{}notify,propose:Atom  List.  \mforall{}slots:set-sig\{i:l\}(\mBbbZ{}).
\mforall{}f:new\_23\_sig\_headers\_type\{i:l\}(Cmd;notify;propose).  \mforall{}es:EO+(Message(f)).  \mforall{}e1,e2:E.  \mforall{}n:\mBbbZ{}.  \mforall{}c:Cmd.
    ((e1  <loc  e2)
    {}\mRightarrow{}  <n,  c>  \mmember{}  new\_23\_sig\_Proposal(Cmd;notify;propose;f)(e1)
    {}\mRightarrow{}  (\muparrow{}(set-sig-member(slots)  n  new\_23\_sig\_ReplicaStateFun(Cmd;notify;propose;slots;f;es;e2))))
Date html generated:
2016_05_17-PM-02_14_32
Last ObjectModification:
2015_12_29-PM-08_06_54
Theory : 2!3!consensus!with!signatures
Home
Index