Nuprl Lemma : new_23_sig_rounds_mem_fun
∀Cmd:ValueAllType. ∀notify,propose:Atom List. ∀f:new_23_sig_headers_type{i:l}(Cmd;notify;propose). ∀es:EO+(Message(f)).
∀e1,e2:E. ∀n,round:ℤ. ∀cmd:Cmd.
  ((e1 <loc e2)
  ⇒ <<n, round>, cmd> ∈ new_23_sig_RoundInfo(Cmd;notify;propose;f)(e1)
  ⇒ (round ≤ new_23_sig_NewRoundsStateFun(Cmd;notify;propose;f;n;es;e2)))
Proof
Definitions occuring in Statement : 
new_23_sig_NewRoundsStateFun: new_23_sig_NewRoundsStateFun(Cmd;notify;propose;f;x;es;e), 
new_23_sig_RoundInfo: new_23_sig_RoundInfo(Cmd;notify;propose;f), 
new_23_sig_headers_type: new_23_sig_headers_type{i:l}(Cmd;notify;propose), 
Message: Message(f), 
classrel: v ∈ X(e), 
event-ordering+: EO+(Info), 
es-locl: (e <loc e'), 
es-E: E, 
list: T List, 
vatype: ValueAllType, 
le: A ≤ B, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
pair: <a, b>, 
product: x:A × B[x], 
int: ℤ, 
atom: Atom
Definitions unfolded in proof : 
vatype: ValueAllType, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
top: Top, 
prop: ℙ, 
new_23_sig_headers_type: new_23_sig_headers_type{i:l}(Cmd;notify;propose), 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Latex:
\mforall{}Cmd:ValueAllType.  \mforall{}notify,propose:Atom  List.  \mforall{}f:new\_23\_sig\_headers\_type\{i:l\}(Cmd;notify;propose).
\mforall{}es:EO+(Message(f)).  \mforall{}e1,e2:E.  \mforall{}n,round:\mBbbZ{}.  \mforall{}cmd:Cmd.
    ((e1  <loc  e2)
    {}\mRightarrow{}  <<n,  round>,  cmd>  \mmember{}  new\_23\_sig\_RoundInfo(Cmd;notify;propose;f)(e1)
    {}\mRightarrow{}  (round  \mleq{}  new\_23\_sig\_NewRoundsStateFun(Cmd;notify;propose;f;n;es;e2)))
Date html generated:
2016_05_17-PM-02_14_55
Last ObjectModification:
2016_01_18-AM-09_32_18
Theory : 2!3!consensus!with!signatures
Home
Index