Nuprl Lemma : binary_map_ind_wf
∀[T,Key,A:Type]. ∀[R:A ⟶ binary_map(T;Key) ⟶ ℙ]. ∀[v:binary_map(T;Key)]. ∀[E:{x:A| R[x;bm_E()]} ].
∀[T:key:Key
    ⟶ value:T
    ⟶ cnt:ℤ
    ⟶ left:binary_map(T;Key)
    ⟶ right:binary_map(T;Key)
    ⟶ {x:A| R[x;left]} 
    ⟶ {x:A| R[x;right]} 
    ⟶ {x:A| R[x;bm_T(key;value;cnt;left;right)]} ].
  (binary_map_ind(v;E;key,value,cnt,left,right,rec1,rec2.T[key;value;cnt;left;right;rec1;rec2]) ∈ {x:A| R[x;v]} )
Proof
Definitions occuring in Statement : 
binary_map_ind: binary_map_ind(v;E;key,value,cnt,left,right,rec1,rec2.T[key;value;cnt;left;right;rec1;rec2]), 
bm_T: bm_T(key;value;cnt;left;right), 
bm_E: bm_E(), 
binary_map: binary_map(T;Key), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[a;b;c;d;e;f;g], 
so_apply: x[s1;s2], 
member: t ∈ T, 
set: {x:A| B[x]} , 
function: x:A ⟶ B[x], 
int: ℤ, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
binary_map_ind: binary_map_ind(v;E;key,value,cnt,left,right,rec1,rec2.T[key;value;cnt;left;right;rec1;rec2]), 
so_apply: x[a;b;c;d;e;f;g], 
so_apply: x[s1;s2], 
binary_map-definition, 
binary_map-induction, 
uniform-comp-nat-induction, 
binary_map-ext, 
eq_atom: x =a y, 
bool_cases_sqequal, 
eqff_to_assert, 
any: any x, 
btrue: tt, 
bfalse: ff, 
it: ⋅, 
top: Top, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
has-value: (a)↓, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]), 
so_apply: x[s1;s2;s3;s4], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uimplies: b supposing a, 
strict4: strict4(F), 
and: P ∧ Q, 
prop: ℙ, 
guard: {T}, 
or: P ∨ Q, 
squash: ↓T, 
subtype_rel: A ⊆r B
Latex:
\mforall{}[T,Key,A:Type].  \mforall{}[R:A  {}\mrightarrow{}  binary\_map(T;Key)  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[v:binary\_map(T;Key)].  \mforall{}[E:\{x:A|  R[x;bm\_E()]\}  ].
\mforall{}[T:key:Key
        {}\mrightarrow{}  value:T
        {}\mrightarrow{}  cnt:\mBbbZ{}
        {}\mrightarrow{}  left:binary\_map(T;Key)
        {}\mrightarrow{}  right:binary\_map(T;Key)
        {}\mrightarrow{}  \{x:A|  R[x;left]\}  
        {}\mrightarrow{}  \{x:A|  R[x;right]\}  
        {}\mrightarrow{}  \{x:A|  R[x;bm\_T(key;value;cnt;left;right)]\}  ].
    (binary\_map\_ind(v;E;key,value,cnt,left,right,rec1,rec2.T[key;value;cnt;left;right;rec1;rec2])
      \mmember{}  \{x:A|  R[x;v]\}  )
 Date html generated: 
2016_05_17-PM-01_37_46
 Last ObjectModification: 
2016_01_17-AM-11_21_16
Theory : binary-map
Home
Index