Nuprl Lemma : binary_mapco_size_wf
∀[T,Key:Type]. ∀[p:binary_mapco(T;Key)].  (binary_mapco_size(p) ∈ partial(ℕ))
Proof
Definitions occuring in Statement : 
binary_mapco_size: binary_mapco_size(p), 
binary_mapco: binary_mapco(T;Key), 
partial: partial(T), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
nat: ℕ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
continuous-monotone: ContinuousMonotone(T.F[T]), 
and: P ∧ Q, 
type-monotone: Monotone(T.F[T]), 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
prop: ℙ, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
strong-type-continuous: Continuous+(T.F[T]), 
type-continuous: Continuous(T.F[T]), 
binary_mapco: binary_mapco(T;Key), 
eq_atom: x =a y, 
le: A ≤ B, 
less_than': less_than'(a;b), 
not: ¬A, 
spreadn: let a,b,c,d,e = u in v[a; b; c; d; e], 
binary_mapco_size: binary_mapco_size(p)
Latex:
\mforall{}[T,Key:Type].  \mforall{}[p:binary\_mapco(T;Key)].    (binary\_mapco\_size(p)  \mmember{}  partial(\mBbbN{}))
 Date html generated: 
2016_05_17-PM-01_36_57
 Last ObjectModification: 
2015_12_28-PM-08_11_30
Theory : binary-map
Home
Index