Nuprl Lemma : bm_T-cnt_wf
∀[T,Key:Type]. ∀[v:binary_map(T;Key)]. bm_T-cnt(v) ∈ ℤ supposing ↑bm_T?(v)
Proof
Definitions occuring in Statement :
bm_T-cnt: bm_T-cnt(v)
,
bm_T?: bm_T?(v)
,
binary_map: binary_map(T;Key)
,
assert: ↑b
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
int: ℤ
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
uimplies: b supposing a
,
member: t ∈ T
,
ext-eq: A ≡ B
,
and: P ∧ Q
,
subtype_rel: A ⊆r B
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
sq_type: SQType(T)
,
guard: {T}
,
eq_atom: x =a y
,
ifthenelse: if b then t else f fi
,
bm_T?: bm_T?(v)
,
pi1: fst(t)
,
assert: ↑b
,
bfalse: ff
,
false: False
,
exists: ∃x:A. B[x]
,
prop: ℙ
,
or: P ∨ Q
,
bnot: ¬bb
,
bm_T-cnt: bm_T-cnt(v)
,
pi2: snd(t)
Latex:
\mforall{}[T,Key:Type]. \mforall{}[v:binary\_map(T;Key)]. bm\_T-cnt(v) \mmember{} \mBbbZ{} supposing \muparrow{}bm\_T?(v)
Date html generated:
2016_05_17-PM-01_37_30
Last ObjectModification:
2015_12_28-PM-08_11_05
Theory : binary-map
Home
Index