Nuprl Lemma : bm_T-right_wf
∀[T,Key:Type]. ∀[v:binary_map(T;Key)].  bm_T-right(v) ∈ binary_map(T;Key) supposing ↑bm_T?(v)
Proof
Definitions occuring in Statement : 
bm_T-right: bm_T-right(v), 
bm_T?: bm_T?(v), 
binary_map: binary_map(T;Key), 
assert: ↑b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
ext-eq: A ≡ B, 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
sq_type: SQType(T), 
guard: {T}, 
eq_atom: x =a y, 
ifthenelse: if b then t else f fi , 
bm_T?: bm_T?(v), 
pi1: fst(t), 
assert: ↑b, 
bfalse: ff, 
false: False, 
exists: ∃x:A. B[x], 
prop: ℙ, 
or: P ∨ Q, 
bnot: ¬bb, 
bm_T-right: bm_T-right(v), 
pi2: snd(t)
Latex:
\mforall{}[T,Key:Type].  \mforall{}[v:binary\_map(T;Key)].    bm\_T-right(v)  \mmember{}  binary\_map(T;Key)  supposing  \muparrow{}bm\_T?(v)
 Date html generated: 
2016_05_17-PM-01_37_37
 Last ObjectModification: 
2015_12_28-PM-08_11_02
Theory : binary-map
Home
Index