Nuprl Lemma : bm_T-wf2
∀[T,Key:Type]. ∀[key:Key]. ∀[value:T]. ∀[cnt:ℤ]. ∀[left,right:binary-map(T;Key)].
  bm_T(key;value;cnt;left;right) ∈ binary-map(T;Key) supposing cnt = (1 + bm_numItems(left) + bm_numItems(right)) ∈ ℤ
Proof
Definitions occuring in Statement : 
bm_numItems: bm_numItems(m), 
binary-map: binary-map(T;Key), 
bm_T: bm_T(key;value;cnt;left;right), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
add: n + m, 
natural_number: $n, 
int: ℤ, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
binary-map: binary-map(T;Key), 
uiff: uiff(P;Q), 
and: P ∧ Q, 
cand: A c∧ B, 
sq_type: SQType(T), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
guard: {T}, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
true: True, 
prop: ℙ
Latex:
\mforall{}[T,Key:Type].  \mforall{}[key:Key].  \mforall{}[value:T].  \mforall{}[cnt:\mBbbZ{}].  \mforall{}[left,right:binary-map(T;Key)].
    bm\_T(key;value;cnt;left;right)  \mmember{}  binary-map(T;Key)  
    supposing  cnt  =  (1  +  bm\_numItems(left)  +  bm\_numItems(right))
 Date html generated: 
2016_05_17-PM-01_38_56
 Last ObjectModification: 
2015_12_28-PM-08_10_03
Theory : binary-map
Home
Index