Nuprl Lemma : bm_T_wf
∀[T,Key:Type]. ∀[key:Key]. ∀[value:T]. ∀[cnt:ℤ]. ∀[left,right:binary_map(T;Key)].
  (bm_T(key;value;cnt;left;right) ∈ binary_map(T;Key))
Proof
Definitions occuring in Statement : 
bm_T: bm_T(key;value;cnt;left;right), 
binary_map: binary_map(T;Key), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
int: ℤ, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
binary_map: binary_map(T;Key), 
bm_T: bm_T(key;value;cnt;left;right), 
eq_atom: x =a y, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
btrue: tt, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
exists: ∃x:A. B[x], 
prop: ℙ, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
subtype_rel: A ⊆r B, 
ext-eq: A ≡ B, 
binary_mapco_size: binary_mapco_size(p), 
spreadn: let a,b,c,d,e = u in v[a; b; c; d; e], 
binary_map_size: binary_map_size(p), 
nat: ℕ, 
le: A ≤ B, 
less_than': less_than'(a;b), 
not: ¬A, 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Latex:
\mforall{}[T,Key:Type].  \mforall{}[key:Key].  \mforall{}[value:T].  \mforall{}[cnt:\mBbbZ{}].  \mforall{}[left,right:binary\_map(T;Key)].
    (bm\_T(key;value;cnt;left;right)  \mmember{}  binary\_map(T;Key))
 Date html generated: 
2016_05_17-PM-01_37_13
 Last ObjectModification: 
2015_12_28-PM-08_11_18
Theory : binary-map
Home
Index