Nuprl Lemma : bm_cnt_prop0_wf
∀[T,Key:Type]. ∀[m:binary_map(T;Key)].  (bm_cnt_prop0(m) ∈ ℤ × 𝔹)
Proof
Definitions occuring in Statement : 
bm_cnt_prop0: bm_cnt_prop0(m), 
binary_map: binary_map(T;Key), 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
product: x:A × B[x], 
int: ℤ, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
bm_cnt_prop0: bm_cnt_prop0(m), 
so_lambda: so_lambda(x,y,z,u,v,w,q.t[x;y;z;u;v;w;q]), 
pi1: fst(t), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
band: p ∧b q, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
pi2: snd(t), 
bfalse: ff, 
so_apply: x[a;b;c;d;e;f;g]
Latex:
\mforall{}[T,Key:Type].  \mforall{}[m:binary\_map(T;Key)].    (bm\_cnt\_prop0(m)  \mmember{}  \mBbbZ{}  \mtimes{}  \mBbbB{})
 Date html generated: 
2016_05_17-PM-01_38_04
 Last ObjectModification: 
2015_12_28-PM-08_10_50
Theory : binary-map
Home
Index