Nuprl Lemma : bm_compare_connex_le
∀[K:Type]. ∀compare:bm_compare(K). ∀k1,k2:K. ((0 ≤ (compare k1 k2)) ∨ (0 ≤ (compare k2 k1)))
Proof
Definitions occuring in Statement :
bm_compare: bm_compare(K)
,
uall: ∀[x:A]. B[x]
,
le: A ≤ B
,
all: ∀x:A. B[x]
,
or: P ∨ Q
,
apply: f a
,
natural_number: $n
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
bm_compare: bm_compare(K)
,
decidable: Dec(P)
,
or: P ∨ Q
,
prop: ℙ
,
guard: {T}
,
false: False
,
and: P ∧ Q
,
not: ¬A
,
implies: P
⇒ Q
,
uimplies: b supposing a
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
top: Top
,
connex: Connex(T;x,y.R[x; y])
Latex:
\mforall{}[K:Type]. \mforall{}compare:bm\_compare(K). \mforall{}k1,k2:K. ((0 \mleq{} (compare k1 k2)) \mvee{} (0 \mleq{} (compare k2 k1)))
Date html generated:
2016_05_17-PM-01_40_45
Last ObjectModification:
2016_01_17-AM-11_20_24
Theory : binary-map
Home
Index