Step
*
of Lemma
bm_compare_int_wf
bm_compare_int() ∈ bm_compare(ℤ)
BY
{ (RepUR ``bm_compare_int bm_compare`` 0 THEN MemTypeCD THEN Reduce 0 THEN Auto) }
1
Trans(ℤ;x,y.0 ≤ if x <z y then -1
if (x =z y) then 0
else 1
fi )
2
1. Trans(ℤ;x,y.0 ≤ if x <z y then -1
if (x =z y) then 0
else 1
fi )
⊢ AntiSym(ℤ;x,y.0 ≤ if x <z y then -1
if (x =z y) then 0
else 1
fi )
3
1. Trans(ℤ;x,y.0 ≤ if x <z y then -1
if (x =z y) then 0
else 1
fi )
2. AntiSym(ℤ;x,y.0 ≤ if x <z y then -1
if (x =z y) then 0
else 1
fi )
⊢ Connex(ℤ;x,y.0 ≤ if x <z y then -1
if (x =z y) then 0
else 1
fi )
4
1. Trans(ℤ;x,y.0 ≤ if x <z y then -1
if (x =z y) then 0
else 1
fi )
2. AntiSym(ℤ;x,y.0 ≤ if x <z y then -1
if (x =z y) then 0
else 1
fi )
3. Connex(ℤ;x,y.0 ≤ if x <z y then -1
if (x =z y) then 0
else 1
fi )
⊢ Refl(ℤ;x,y.if x <z y then -1 if (x =z y) then 0 else 1 fi = 0 ∈ ℤ)
5
1. Trans(ℤ;x,y.0 ≤ if x <z y then -1
if (x =z y) then 0
else 1
fi )
2. AntiSym(ℤ;x,y.0 ≤ if x <z y then -1
if (x =z y) then 0
else 1
fi )
3. Connex(ℤ;x,y.0 ≤ if x <z y then -1
if (x =z y) then 0
else 1
fi )
4. Refl(ℤ;x,y.if x <z y then -1 if (x =z y) then 0 else 1 fi = 0 ∈ ℤ)
⊢ Sym(ℤ;x,y.if x <z y then -1 if (x =z y) then 0 else 1 fi = 0 ∈ ℤ)
Latex:
Latex:
bm\_compare\_int() \mmember{} bm\_compare(\mBbbZ{})
By
Latex:
(RepUR ``bm\_compare\_int bm\_compare`` 0 THEN MemTypeCD THEN Reduce 0 THEN Auto)
Home
Index