Nuprl Lemma : bm_count_prop_pos
∀[T,Key:Type]. ∀[m:binary_map(T;Key)].  (0 ≤ bm_count(m))
Proof
Definitions occuring in Statement : 
bm_count: bm_count(m), 
binary_map: binary_map(T;Key), 
uall: ∀[x:A]. B[x], 
le: A ≤ B, 
natural_number: $n, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
implies: P ⇒ Q, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
prop: ℙ, 
all: ∀x:A. B[x], 
guard: {T}, 
top: Top, 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x]
Latex:
\mforall{}[T,Key:Type].  \mforall{}[m:binary\_map(T;Key)].    (0  \mleq{}  bm\_count(m))
 Date html generated: 
2016_05_17-PM-01_39_18
 Last ObjectModification: 
2016_01_17-AM-11_20_41
Theory : binary-map
Home
Index