Nuprl Lemma : bm_insert_wf
∀[T,Key:Type]. ∀[compare:bm_compare(Key)]. ∀[m:binary-map(T;Key)]. ∀[x:Key]. ∀[v:T].
(bm_insert(compare;m;x;v) ∈ binary-map(T;Key))
Proof
Definitions occuring in Statement :
bm_insert: bm_insert(compare;m;x;v)
,
bm_compare: bm_compare(K)
,
binary-map: binary-map(T;Key)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
binary-map: binary-map(T;Key)
,
all: ∀x:A. B[x]
,
nat: ℕ
,
implies: P
⇒ Q
,
false: False
,
ge: i ≥ j
,
uimplies: b supposing a
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
not: ¬A
,
top: Top
,
and: P ∧ Q
,
prop: ℙ
,
guard: {T}
,
subtype_rel: A ⊆r B
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
decidable: Dec(P)
,
or: P ∨ Q
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
ext-eq: A ≡ B
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
sq_type: SQType(T)
,
eq_atom: x =a y
,
ifthenelse: if b then t else f fi
,
bm_E: bm_E()
,
binary_map_size: binary_map_size(p)
,
assert: ↑b
,
bm_insert: bm_insert(compare;m;x;v)
,
binary_map_ind: binary_map_ind(v;E;key,value,cnt,left,right,rec1,rec2.T[key;value;cnt;left;right;rec1;rec2])
,
bm_cnt_prop: bm_cnt_prop(m)
,
pi2: snd(t)
,
bm_cnt_prop0: bm_cnt_prop0(m)
,
bm_T: bm_T(key;value;cnt;left;right)
,
band: p ∧b q
,
eq_int: (i =z j)
,
pi1: fst(t)
,
true: True
,
bfalse: ff
,
bnot: ¬bb
,
spreadn: let a,b,c,d,e = u in v[a; b; c; d; e]
,
cand: A c∧ B
,
less_than: a < b
,
squash: ↓T
,
bm_compare: bm_compare(K)
,
callbyvalueall: callbyvalueall,
has-value: (a)↓
,
has-valueall: has-valueall(a)
Latex:
\mforall{}[T,Key:Type]. \mforall{}[compare:bm\_compare(Key)]. \mforall{}[m:binary-map(T;Key)]. \mforall{}[x:Key]. \mforall{}[v:T].
(bm\_insert(compare;m;x;v) \mmember{} binary-map(T;Key))
Date html generated:
2016_05_17-PM-01_41_20
Last ObjectModification:
2016_01_17-AM-11_20_39
Theory : binary-map
Home
Index