Nuprl Lemma : bm_insert_wf
∀[T,Key:Type]. ∀[compare:bm_compare(Key)]. ∀[m:binary-map(T;Key)]. ∀[x:Key]. ∀[v:T].
  (bm_insert(compare;m;x;v) ∈ binary-map(T;Key))
Proof
Definitions occuring in Statement : 
bm_insert: bm_insert(compare;m;x;v), 
bm_compare: bm_compare(K), 
binary-map: binary-map(T;Key), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
binary-map: binary-map(T;Key), 
all: ∀x:A. B[x], 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
not: ¬A, 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
guard: {T}, 
subtype_rel: A ⊆r B, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
le: A ≤ B, 
less_than': less_than'(a;b), 
ext-eq: A ≡ B, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
sq_type: SQType(T), 
eq_atom: x =a y, 
ifthenelse: if b then t else f fi , 
bm_E: bm_E(), 
binary_map_size: binary_map_size(p), 
assert: ↑b, 
bm_insert: bm_insert(compare;m;x;v), 
binary_map_ind: binary_map_ind(v;E;key,value,cnt,left,right,rec1,rec2.T[key;value;cnt;left;right;rec1;rec2]), 
bm_cnt_prop: bm_cnt_prop(m), 
pi2: snd(t), 
bm_cnt_prop0: bm_cnt_prop0(m), 
bm_T: bm_T(key;value;cnt;left;right), 
band: p ∧b q, 
eq_int: (i =z j), 
pi1: fst(t), 
true: True, 
bfalse: ff, 
bnot: ¬bb, 
spreadn: let a,b,c,d,e = u in v[a; b; c; d; e], 
cand: A c∧ B, 
less_than: a < b, 
squash: ↓T, 
bm_compare: bm_compare(K), 
callbyvalueall: callbyvalueall, 
has-value: (a)↓, 
has-valueall: has-valueall(a)
Latex:
\mforall{}[T,Key:Type].  \mforall{}[compare:bm\_compare(Key)].  \mforall{}[m:binary-map(T;Key)].  \mforall{}[x:Key].  \mforall{}[v:T].
    (bm\_insert(compare;m;x;v)  \mmember{}  binary-map(T;Key))
 Date html generated: 
2016_05_17-PM-01_41_20
 Last ObjectModification: 
2016_01_17-AM-11_20_39
Theory : binary-map
Home
Index