Nuprl Lemma : bm_min_wf
∀[T,Key:Type]. ∀[m:binary_map(T;Key)].  bm_min(m) ∈ Key × T supposing ↑bm_T?(m)
Proof
Definitions occuring in Statement : 
bm_min: bm_min(m), 
bm_T?: bm_T?(v), 
binary_map: binary_map(T;Key), 
assert: ↑b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
product: x:A × B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
not: ¬A, 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
guard: {T}, 
subtype_rel: A ⊆r B, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
le: A ≤ B, 
less_than': less_than'(a;b), 
ext-eq: A ≡ B, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
sq_type: SQType(T), 
eq_atom: x =a y, 
ifthenelse: if b then t else f fi , 
bm_E: bm_E(), 
binary_map_size: binary_map_size(p), 
bm_T?: bm_T?(v), 
pi1: fst(t), 
assert: ↑b, 
bfalse: ff, 
bnot: ¬bb, 
bm_T: bm_T(key;value;cnt;left;right), 
spreadn: let a,b,c,d,e = u in v[a; b; c; d; e], 
cand: A c∧ B, 
less_than: a < b, 
squash: ↓T, 
bm_min: bm_min(m), 
binary_map_ind: binary_map_ind(v;E;key,value,cnt,left,right,rec1,rec2.T[key;value;cnt;left;right;rec1;rec2]), 
so_lambda: so_lambda(x,y,z,w,v.t[x; y; z; w; v]), 
so_apply: x[s1;s2;s3;s4;s5], 
true: True
Latex:
\mforall{}[T,Key:Type].  \mforall{}[m:binary\_map(T;Key)].    bm\_min(m)  \mmember{}  Key  \mtimes{}  T  supposing  \muparrow{}bm\_T?(m)
 Date html generated: 
2016_05_17-PM-01_40_14
 Last ObjectModification: 
2016_01_17-AM-11_21_06
Theory : binary-map
Home
Index