Nuprl Lemma : bm_single_R_wf
∀[T,Key:Type]. ∀[b:Key]. ∀[bv:T]. ∀[m,z:binary-map(T;Key)].
  bm_single_R(b;bv;m;z) ∈ binary-map(T;Key) supposing ↑bm_T?(m)
Proof
Definitions occuring in Statement : 
bm_single_R: bm_single_R(b;bv;m;z), 
binary-map: binary-map(T;Key), 
bm_T?: bm_T?(v), 
assert: ↑b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
binary-map: binary-map(T;Key), 
bm_single_R: bm_single_R(b;bv;m;z), 
ext-eq: A ≡ B, 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
sq_type: SQType(T), 
guard: {T}, 
eq_atom: x =a y, 
ifthenelse: if b then t else f fi , 
bm_E: bm_E(), 
bm_T?: bm_T?(v), 
pi1: fst(t), 
assert: ↑b, 
bfalse: ff, 
so_lambda: so_lambda(x,y,z,w,v.t[x; y; z; w; v]), 
top: Top, 
so_apply: x[s1;s2;s3;s4;s5], 
false: False, 
exists: ∃x:A. B[x], 
prop: ℙ, 
or: P ∨ Q, 
bnot: ¬bb, 
bm_T: bm_T(key;value;cnt;left;right)
Latex:
\mforall{}[T,Key:Type].  \mforall{}[b:Key].  \mforall{}[bv:T].  \mforall{}[m,z:binary-map(T;Key)].
    bm\_single\_R(b;bv;m;z)  \mmember{}  binary-map(T;Key)  supposing  \muparrow{}bm\_T?(m)
 Date html generated: 
2016_05_17-PM-01_39_47
 Last ObjectModification: 
2015_12_28-PM-08_09_53
Theory : binary-map
Home
Index