Nuprl Lemma : bm_unionWith_wf
∀[T,Key:Type]. ∀[compare:bm_compare(Key)]. ∀[m1,m2:binary-map(T;Key)]. ∀[f:T ⟶ T ⟶ T].
  (bm_unionWith(compare;f;m1;m2) ∈ binary-map(T;Key))
Proof
Definitions occuring in Statement : 
bm_unionWith: bm_unionWith(compare;f;m1;m2), 
bm_compare: bm_compare(K), 
binary-map: binary-map(T;Key), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
bm_unionWith: bm_unionWith(compare;f;m1;m2), 
binary-map: binary-map(T;Key), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
guard: {T}
Latex:
\mforall{}[T,Key:Type].  \mforall{}[compare:bm\_compare(Key)].  \mforall{}[m1,m2:binary-map(T;Key)].  \mforall{}[f:T  {}\mrightarrow{}  T  {}\mrightarrow{}  T].
    (bm\_unionWith(compare;f;m1;m2)  \mmember{}  binary-map(T;Key))
 Date html generated: 
2016_05_17-PM-01_43_54
 Last ObjectModification: 
2015_12_28-PM-08_08_38
Theory : binary-map
Home
Index