Nuprl Lemma : Accum-class-top
∀[Info,A:Type]. ∀[es:EO+(Info)]. ∀[f:Top]. ∀[X:EClass(A)]. ∀[init:Id ⟶ bag(Top)].
  (Accum-class(f;init;X) ∈ EClass(Top))
Proof
Definitions occuring in Statement : 
Accum-class: Accum-class(f;init;X), 
eclass: EClass(A[eo; e]), 
event-ordering+: EO+(Info), 
Id: Id, 
uall: ∀[x:A]. B[x], 
top: Top, 
member: t ∈ T, 
function: x:A ⟶ B[x], 
universe: Type, 
bag: bag(T)
Definitions unfolded in proof : 
Accum-class: Accum-class(f;init;X), 
rec-combined-class-opt-1: F|X,Prior(self)?init|, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
prop: ℙ, 
so_lambda: λ2x y.t[x; y], 
subtype_rel: A ⊆r B, 
so_apply: x[s1;s2], 
int_seg: {i..j-}, 
uimplies: b supposing a, 
guard: {T}, 
lelt: i ≤ j < k, 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
lifting-2: lifting-2(f), 
lifting2: lifting2(f;abag;bbag), 
lifting-gen-rev: lifting-gen-rev(n;f;bags), 
lifting-gen-list-rev: lifting-gen-list-rev(n;bags), 
eq_int: (i =z j), 
select: L[n], 
cons: [a / b], 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
subtract: n - m, 
btrue: tt, 
less_than: a < b, 
squash: ↓T, 
true: True, 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Latex:
\mforall{}[Info,A:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[f:Top].  \mforall{}[X:EClass(A)].  \mforall{}[init:Id  {}\mrightarrow{}  bag(Top)].
    (Accum-class(f;init;X)  \mmember{}  EClass(Top))
Date html generated:
2016_05_17-AM-09_21_39
Last ObjectModification:
2016_01_17-PM-11_11_56
Theory : classrel!lemmas
Home
Index