Step
*
1
of Lemma
Accum-loc-class-as-loop-class2
.....equality.....
1. Info : Type
2. B : Type
3. A : Type
4. f : Id ⟶ A ⟶ B ⟶ B
5. init : Id ⟶ bag(B)
6. X : EClass(A)
7. es : EO+(Info)@i'
8. e : E@i
9. ∀e1:E. ((e1 < e)
⇒ ((loop-class2((f o X);init) es e1) = (Accum-loc-class(f;init;X) es e1) ∈ bag(B)))
⊢ Prior(loop-class2(λes,e. bag-map(f loc(e);X(e));init))?init(e) = Prior(Accum-loc-class(f;init;X))?init(e) ∈ bag(B)
BY
{ (Fold `eclass1` 0 THEN Fold `class-ap` (-1) THEN BLemma `primed-class-opt_functionality` THEN Auto) }
Latex:
Latex:
.....equality.....
1. Info : Type
2. B : Type
3. A : Type
4. f : Id {}\mrightarrow{} A {}\mrightarrow{} B {}\mrightarrow{} B
5. init : Id {}\mrightarrow{} bag(B)
6. X : EClass(A)
7. es : EO+(Info)@i'
8. e : E@i
9. \mforall{}e1:E. ((e1 < e) {}\mRightarrow{} ((loop-class2((f o X);init) es e1) = (Accum-loc-class(f;init;X) es e1)))
\mvdash{} Prior(loop-class2(\mlambda{}es,e. bag-map(f loc(e);X(e));init))?init(e)
= Prior(Accum-loc-class(f;init;X))?init(e)
By
Latex:
(Fold `eclass1` 0 THEN Fold `class-ap` (-1) THEN BLemma `primed-class-opt\_functionality` THEN Auto)
Home
Index