Nuprl Lemma : Accum-loc-classrel-Memory
∀[Info,B,A:Type]. ∀[f:Id ⟶ A ⟶ B ⟶ B]. ∀[init:Id ⟶ bag(B)]. ∀[X:EClass(A)]. ∀[es:EO+(Info)]. ∀[e:E]. ∀[v:B].
(v ∈ Accum-loc-class(f;init;X)(e)
⇐⇒ ↓∃a:A. ∃b:B. (a ∈ X(e) ∧ b ∈ Memory-loc-class(f;init;X)(e) ∧ (v = (f loc(e) a b) ∈ B)))
Proof
Definitions occuring in Statement :
Memory-loc-class: Memory-loc-class(f;init;X)
,
Accum-loc-class: Accum-loc-class(f;init;X)
,
classrel: v ∈ X(e)
,
eclass: EClass(A[eo; e])
,
event-ordering+: EO+(Info)
,
es-loc: loc(e)
,
es-E: E
,
Id: Id
,
uall: ∀[x:A]. B[x]
,
exists: ∃x:A. B[x]
,
iff: P
⇐⇒ Q
,
squash: ↓T
,
and: P ∧ Q
,
apply: f a
,
function: x:A ⟶ B[x]
,
universe: Type
,
equal: s = t ∈ T
,
bag: bag(T)
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
top: Top
,
classrel: v ∈ X(e)
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
implies: P
⇒ Q
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
subtype_rel: A ⊆r B
,
so_apply: x[s]
,
rev_implies: P
⇐ Q
,
eclass: EClass(A[eo; e])
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
exists: ∃x:A. B[x]
,
squash: ↓T
,
bag-member: x ↓∈ bs
,
uiff: uiff(P;Q)
,
uimplies: b supposing a
Latex:
\mforall{}[Info,B,A:Type]. \mforall{}[f:Id {}\mrightarrow{} A {}\mrightarrow{} B {}\mrightarrow{} B]. \mforall{}[init:Id {}\mrightarrow{} bag(B)]. \mforall{}[X:EClass(A)]. \mforall{}[es:EO+(Info)].
\mforall{}[e:E]. \mforall{}[v:B].
(v \mmember{} Accum-loc-class(f;init;X)(e)
\mLeftarrow{}{}\mRightarrow{} \mdownarrow{}\mexists{}a:A. \mexists{}b:B. (a \mmember{} X(e) \mwedge{} b \mmember{} Memory-loc-class(f;init;X)(e) \mwedge{} (v = (f loc(e) a b))))
Date html generated:
2016_05_17-AM-09_21_59
Last ObjectModification:
2016_01_17-PM-11_11_58
Theory : classrel!lemmas
Home
Index