Step
*
2
2
1
of Lemma
Memory-class-progress
1. Info : Type
2. B : Type
3. A : Type
4. R : B ⟶ B ⟶ ℙ@i'
5. P : A ⟶ B ⟶ ℙ@i'
6. f : A ⟶ B ⟶ B@i
7. init : Id ⟶ bag(B)@i
8. X : EClass(A)@i'
9. es : EO+(Info)@i'
10. e1 : E@i
11. e2 : E@i
12. v1 : B@i
13. v2 : B@i
14. ∀a:A. ∀s:B. Dec(P[a;s])@i
15. Trans(B;x,y.R[x;y])@i
16. ∀s1,s2:B. SqStable(R[s1;s2])@i
17. ∀a:A. ∀e:E. ∀s:B.
(e1 ≤loc e
⇒ (e <loc e2)
⇒ a ∈ X(e)
⇒ s ∈ Memory-class(f;init;X)(e)
⇒ ((P[a;s]
⇒ R[s;f a s]) ∧ ((¬P[a;s])
⇒ (s = (f a s) ∈ B))))@i
18. single-valued-classrel(es;X;A)@i
19. single-valued-bag(init loc(e1);B)@i
20. ¬↑first(e1)
21. iterated_classrel(es;B;A;f;init;X;pred(e1);v1)
22. ¬↑first(e2)
23. iterated_classrel(es;B;A;f;init;X;pred(e2);v2)
24. (e1 <loc e2)@i
25. ∃e:E. ∃a:A. ∃s:B. (e1 ≤loc e ∧ (e <loc e2) ∧ s ∈ Memory-class(f;init;X)(e) ∧ a ∈ X(e) ∧ P[a;s])@i
26. a : A@i
27. e : E@i
28. s : B@i
29. (pred(e1) <loc e)@i
30. e ≤loc pred(e2) @i
31. a ∈ X(e)@i
32. iterated_classrel(es;B;A;f;init;X;pred(e);s)@i
33. ¬P[a;s]@i
⊢ s = (f a s) ∈ B
BY
{ ((InstHyp [⌜a⌝;⌜e⌝;⌜s⌝] (-17)⋅ THENM Auto)
THEN MaAuto
THEN Try (Complete ((MaUseClassRel 0 THEN (OrRight THENA Auto) THEN Auto)))
THEN (InstLemma `es-locl-trichotomy` [⌜es⌝;⌜e1⌝;⌜e⌝]⋅ THENA Auto)
THEN D (-1)
THEN Thin (-1)
THEN (D (-1) THENA Auto)
THEN RepeatFor 2 ((D (-1) THEN Auto))
THEN Assert ⌜False⌝⋅
THEN Auto
THEN InstLemma `es-pred_property` [⌜es⌝;⌜e1⌝]⋅
THEN Auto
THEN InstHyp [⌜e⌝] (-1)⋅
THEN Auto
THEN D (-1)
THEN Auto) }
Latex:
Latex:
1. Info : Type
2. B : Type
3. A : Type
4. R : B {}\mrightarrow{} B {}\mrightarrow{} \mBbbP{}@i'
5. P : A {}\mrightarrow{} B {}\mrightarrow{} \mBbbP{}@i'
6. f : A {}\mrightarrow{} B {}\mrightarrow{} B@i
7. init : Id {}\mrightarrow{} bag(B)@i
8. X : EClass(A)@i'
9. es : EO+(Info)@i'
10. e1 : E@i
11. e2 : E@i
12. v1 : B@i
13. v2 : B@i
14. \mforall{}a:A. \mforall{}s:B. Dec(P[a;s])@i
15. Trans(B;x,y.R[x;y])@i
16. \mforall{}s1,s2:B. SqStable(R[s1;s2])@i
17. \mforall{}a:A. \mforall{}e:E. \mforall{}s:B.
(e1 \mleq{}loc e
{}\mRightarrow{} (e <loc e2)
{}\mRightarrow{} a \mmember{} X(e)
{}\mRightarrow{} s \mmember{} Memory-class(f;init;X)(e)
{}\mRightarrow{} ((P[a;s] {}\mRightarrow{} R[s;f a s]) \mwedge{} ((\mneg{}P[a;s]) {}\mRightarrow{} (s = (f a s)))))@i
18. single-valued-classrel(es;X;A)@i
19. single-valued-bag(init loc(e1);B)@i
20. \mneg{}\muparrow{}first(e1)
21. iterated\_classrel(es;B;A;f;init;X;pred(e1);v1)
22. \mneg{}\muparrow{}first(e2)
23. iterated\_classrel(es;B;A;f;init;X;pred(e2);v2)
24. (e1 <loc e2)@i
25. \mexists{}e:E
\mexists{}a:A. \mexists{}s:B. (e1 \mleq{}loc e \mwedge{} (e <loc e2) \mwedge{} s \mmember{} Memory-class(f;init;X)(e) \mwedge{} a \mmember{} X(e) \mwedge{} P[a;s])@i
26. a : A@i
27. e : E@i
28. s : B@i
29. (pred(e1) <loc e)@i
30. e \mleq{}loc pred(e2) @i
31. a \mmember{} X(e)@i
32. iterated\_classrel(es;B;A;f;init;X;pred(e);s)@i
33. \mneg{}P[a;s]@i
\mvdash{} s = (f a s)
By
Latex:
((InstHyp [\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}s\mkleeneclose{}] (-17)\mcdot{} THENM Auto)
THEN MaAuto
THEN Try (Complete ((MaUseClassRel 0 THEN (OrRight THENA Auto) THEN Auto)))
THEN (InstLemma `es-locl-trichotomy` [\mkleeneopen{}es\mkleeneclose{};\mkleeneopen{}e1\mkleeneclose{};\mkleeneopen{}e\mkleeneclose{}]\mcdot{} THENA Auto)
THEN D (-1)
THEN Thin (-1)
THEN (D (-1) THENA Auto)
THEN RepeatFor 2 ((D (-1) THEN Auto))
THEN Assert \mkleeneopen{}False\mkleeneclose{}\mcdot{}
THEN Auto
THEN InstLemma `es-pred\_property` [\mkleeneopen{}es\mkleeneclose{};\mkleeneopen{}e1\mkleeneclose{}]\mcdot{}
THEN Auto
THEN InstHyp [\mkleeneopen{}e\mkleeneclose{}] (-1)\mcdot{}
THEN Auto
THEN D (-1)
THEN Auto)
Home
Index