Nuprl Lemma : Memory-class-single-val2
∀[Info,A,S:Type]. ∀[init:Id ⟶ bag(S)]. ∀[f:A ⟶ S ⟶ S]. ∀[X:EClass(A)].
  ∀es:EO+(Info). ∀e:E. ∀s1,s2:S.
    (single-valued-classrel(es;X;A)
    ⇒ single-valued-bag(init loc(e);S)
    ⇒ s1 ∈ Memory-class(f;init;X)(e)
    ⇒ s2 ∈ Memory-class(f;init;X)(e)
    ⇒ (s1 = s2 ∈ S))
Proof
Definitions occuring in Statement : 
Memory-class: Memory-class(f;init;X), 
single-valued-classrel: single-valued-classrel(es;X;T), 
classrel: v ∈ X(e), 
eclass: EClass(A[eo; e]), 
event-ordering+: EO+(Info), 
es-loc: loc(e), 
es-E: E, 
Id: Id, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T, 
single-valued-bag: single-valued-bag(b;T), 
bag: bag(T)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
or: P ∨ Q, 
single-valued-bag: single-valued-bag(b;T), 
not: ¬A, 
false: False, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
squash: ↓T, 
prop: ℙ, 
es-E: E, 
es-base-E: es-base-E(es), 
true: True, 
guard: {T}, 
rev_implies: P ⇐ Q, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2]
Latex:
\mforall{}[Info,A,S:Type].  \mforall{}[init:Id  {}\mrightarrow{}  bag(S)].  \mforall{}[f:A  {}\mrightarrow{}  S  {}\mrightarrow{}  S].  \mforall{}[X:EClass(A)].
    \mforall{}es:EO+(Info).  \mforall{}e:E.  \mforall{}s1,s2:S.
        (single-valued-classrel(es;X;A)
        {}\mRightarrow{}  single-valued-bag(init  loc(e);S)
        {}\mRightarrow{}  s1  \mmember{}  Memory-class(f;init;X)(e)
        {}\mRightarrow{}  s2  \mmember{}  Memory-class(f;init;X)(e)
        {}\mRightarrow{}  (s1  =  s2))
Date html generated:
2016_05_17-AM-09_23_41
Last ObjectModification:
2016_01_17-PM-11_10_42
Theory : classrel!lemmas
Home
Index