Nuprl Lemma : Memory-classrel-loc
∀[Info,B,A:Type]. ∀[f:Id ⟶ A ⟶ B ⟶ B]. ∀[init:Id ⟶ bag(B)]. ∀[X:EClass(A)]. ∀[es:EO+(Info)]. ∀[e:E]. ∀[v:B].
  uiff(v ∈ Memory-loc-class(f;init;X)(e);v ∈ Memory-class(f loc(e);init;X)(e))
Proof
Definitions occuring in Statement : 
Memory-loc-class: Memory-loc-class(f;init;X), 
Memory-class: Memory-class(f;init;X), 
classrel: v ∈ X(e), 
eclass: EClass(A[eo; e]), 
event-ordering+: EO+(Info), 
es-loc: loc(e), 
es-E: E, 
Id: Id, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
apply: f a, 
function: x:A ⟶ B[x], 
universe: Type, 
bag: bag(T)
Definitions unfolded in proof : 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
member: t ∈ T, 
classrel: v ∈ X(e), 
bag-member: x ↓∈ bs, 
squash: ↓T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
rev_implies: P ⇐ Q
Latex:
\mforall{}[Info,B,A:Type].  \mforall{}[f:Id  {}\mrightarrow{}  A  {}\mrightarrow{}  B  {}\mrightarrow{}  B].  \mforall{}[init:Id  {}\mrightarrow{}  bag(B)].  \mforall{}[X:EClass(A)].  \mforall{}[es:EO+(Info)].
\mforall{}[e:E].  \mforall{}[v:B].
    uiff(v  \mmember{}  Memory-loc-class(f;init;X)(e);v  \mmember{}  Memory-class(f  loc(e);init;X)(e))
Date html generated:
2016_05_17-AM-09_23_03
Last ObjectModification:
2016_01_17-PM-11_11_20
Theory : classrel!lemmas
Home
Index