Nuprl Lemma : Prior-Accum-class-single-val0
∀[Info,A,B:Type]. ∀[es:EO+(Info)]. ∀[f:A ⟶ B ⟶ B]. ∀[X:EClass(A)]. ∀[init:Id ⟶ bag(B)]. ∀[e:E]. ∀[v1,v2:B].
  (v1 = v2 ∈ B) supposing 
     (v1 ∈ Prior(Accum-class(f;init;X))?init(e) and 
     v2 ∈ Prior(Accum-class(f;init;X))?init(e) and 
     single-valued-bag(init loc(e);B) and 
     single-valued-classrel(es;X;A))
Proof
Definitions occuring in Statement : 
Accum-class: Accum-class(f;init;X), 
primed-class-opt: Prior(X)?b, 
single-valued-classrel: single-valued-classrel(es;X;T), 
classrel: v ∈ X(e), 
eclass: EClass(A[eo; e]), 
event-ordering+: EO+(Info), 
es-loc: loc(e), 
es-E: E, 
Id: Id, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
apply: f a, 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T, 
single-valued-bag: single-valued-bag(b;T), 
bag: bag(T)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
squash: ↓T, 
or: P ∨ Q, 
exists: ∃x:A. B[x], 
es-p-local-pred: es-p-local-pred(es;P), 
all: ∀x:A. B[x], 
subtype_rel: A ⊆r B, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
es-locl: (e <loc e'), 
not: ¬A, 
prop: ℙ, 
false: False, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
true: True, 
guard: {T}, 
single-valued-bag: single-valued-bag(b;T)
Latex:
\mforall{}[Info,A,B:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[f:A  {}\mrightarrow{}  B  {}\mrightarrow{}  B].  \mforall{}[X:EClass(A)].  \mforall{}[init:Id  {}\mrightarrow{}  bag(B)].  \mforall{}[e:E].
\mforall{}[v1,v2:B].
    (v1  =  v2)  supposing 
          (v1  \mmember{}  Prior(Accum-class(f;init;X))?init(e)  and 
          v2  \mmember{}  Prior(Accum-class(f;init;X))?init(e)  and 
          single-valued-bag(init  loc(e);B)  and 
          single-valued-classrel(es;X;A))
Date html generated:
2016_05_17-AM-09_32_03
Last ObjectModification:
2016_01_17-PM-11_08_35
Theory : classrel!lemmas
Home
Index