Nuprl Lemma : State-loc-comb-classrel-mem
∀[Info,B,A:Type]. ∀[f:Id ⟶ A ⟶ B ⟶ B]. ∀[init:Id ⟶ bag(B)].
∀X:EClass(A). ∀es:EO+(Info). ∀e:E.
∀[v:B]. (v ∈ Prior(State-loc-comb(init;f;X))?init(e)
⇐⇒ v ∈ Memory-loc-class(f;init;X)(e))
Proof
Definitions occuring in Statement :
State-loc-comb: State-loc-comb(init;f;X)
,
Memory-loc-class: Memory-loc-class(f;init;X)
,
primed-class-opt: Prior(X)?b
,
classrel: v ∈ X(e)
,
eclass: EClass(A[eo; e])
,
event-ordering+: EO+(Info)
,
es-E: E
,
Id: Id
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
function: x:A ⟶ B[x]
,
universe: Type
,
bag: bag(T)
Definitions unfolded in proof :
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
implies: P
⇒ Q
,
member: t ∈ T
,
prop: ℙ
,
uall: ∀[x:A]. B[x]
,
rev_implies: P
⇐ Q
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
all: ∀x:A. B[x]
,
classrel: v ∈ X(e)
,
bag-member: x ↓∈ bs
,
squash: ↓T
,
uiff: uiff(P;Q)
,
rev_uimplies: rev_uimplies(P;Q)
,
uimplies: b supposing a
,
sq_stable: SqStable(P)
,
or: P ∨ Q
,
exists: ∃x:A. B[x]
,
cand: A c∧ B
,
es-p-local-pred: es-p-local-pred(es;P)
,
es-locl: (e <loc e')
,
not: ¬A
,
false: False
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
guard: {T}
Latex:
\mforall{}[Info,B,A:Type]. \mforall{}[f:Id {}\mrightarrow{} A {}\mrightarrow{} B {}\mrightarrow{} B]. \mforall{}[init:Id {}\mrightarrow{} bag(B)].
\mforall{}X:EClass(A). \mforall{}es:EO+(Info). \mforall{}e:E.
\mforall{}[v:B]. (v \mmember{} Prior(State-loc-comb(init;f;X))?init(e) \mLeftarrow{}{}\mRightarrow{} v \mmember{} Memory-loc-class(f;init;X)(e))
Date html generated:
2016_05_17-AM-10_01_39
Last ObjectModification:
2016_01_17-PM-11_07_47
Theory : classrel!lemmas
Home
Index