Nuprl Lemma : State-loc-comb-is-loop-class-state
∀[Info,A,B:Type]. ∀[init:Id ⟶ bag(B)]. ∀[f:Id ⟶ A ⟶ B ⟶ B]. ∀[X:EClass(A)].
  (State-loc-comb(init;f;X) = loop-class-state((f o X);init) ∈ EClass(B))
Proof
Definitions occuring in Statement : 
State-loc-comb: State-loc-comb(init;f;X), 
loop-class-state: loop-class-state(X;init), 
eclass1: (f o X), 
eclass: EClass(A[eo; e]), 
Id: Id, 
uall: ∀[x:A]. B[x], 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T, 
bag: bag(T)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
State-loc-comb: State-loc-comb(init;f;X), 
rec-combined-loc-class-opt-1: F|Loc, X, Prior(self)?init|, 
exists: ∃x:A. B[x], 
so_lambda: λ2x y.t[x; y], 
subtype_rel: A ⊆r B, 
so_apply: x[s1;s2], 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
strongwellfounded: SWellFounded(R[x; y]), 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
not: ¬A, 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
guard: {T}, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
le: A ≤ B, 
less_than': less_than'(a;b), 
decidable: Dec(P), 
or: P ∨ Q, 
less_than: a < b, 
squash: ↓T, 
select: L[n], 
cons: [a / b], 
rec-comb: rec-comb(X;f;init), 
loop-class-state: loop-class-state(X;init), 
class-ap: X(e), 
eclass-cond: eclass-cond(X;Y), 
eclass3: eclass3(X;Y), 
member-eclass: e ∈b X, 
eclass1: (f o X), 
sq_type: SQType(T), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
eclass: EClass(A[eo; e]), 
ifthenelse: if b then t else f fi , 
bnot: ¬bb, 
bfalse: ff, 
assert: ↑b, 
lifting-loc-2: lifting-loc-2(f), 
lifting2-loc: lifting2-loc(f;loc;abag;bbag), 
lifting-loc-gen-rev: lifting-loc-gen-rev(n;bags;loc;f), 
lifting-gen-rev: lifting-gen-rev(n;f;bags), 
lifting-gen-list-rev: lifting-gen-list-rev(n;bags), 
eq_int: (i =z j), 
subtract: n - m, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
true: True
Latex:
\mforall{}[Info,A,B:Type].  \mforall{}[init:Id  {}\mrightarrow{}  bag(B)].  \mforall{}[f:Id  {}\mrightarrow{}  A  {}\mrightarrow{}  B  {}\mrightarrow{}  B].  \mforall{}[X:EClass(A)].
    (State-loc-comb(init;f;X)  =  loop-class-state((f  o  X);init))
Date html generated:
2016_05_17-AM-10_00_47
Last ObjectModification:
2016_01_17-PM-11_06_18
Theory : classrel!lemmas
Home
Index