Nuprl Lemma : State-loc-comb-non-empty
∀[Info,B,A:Type]. ∀[f:Id ⟶ A ⟶ B ⟶ B]. ∀[init:Id ⟶ bag(B)].
∀X:EClass(A). ∀es:EO+(Info). ∀e:E. ((¬↑bag-null(init loc(e)))
⇒ (↓∃v:B. v ∈ State-loc-comb(init;f;X)(e)))
Proof
Definitions occuring in Statement :
State-loc-comb: State-loc-comb(init;f;X)
,
classrel: v ∈ X(e)
,
eclass: EClass(A[eo; e])
,
event-ordering+: EO+(Info)
,
es-loc: loc(e)
,
es-E: E
,
Id: Id
,
assert: ↑b
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
not: ¬A
,
squash: ↓T
,
implies: P
⇒ Q
,
apply: f a
,
function: x:A ⟶ B[x]
,
universe: Type
,
bag-null: bag-null(bs)
,
bag: bag(T)
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
subtype_rel: A ⊆r B
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
rev_uimplies: rev_uimplies(P;Q)
,
uimplies: b supposing a
,
gt: i > j
,
nat: ℕ
,
decidable: Dec(P)
,
or: P ∨ Q
,
not: ¬A
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
top: Top
,
prop: ℙ
,
assert: ↑b
,
ifthenelse: if b then t else f fi
,
btrue: tt
,
true: True
,
squash: ↓T
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
Latex:
\mforall{}[Info,B,A:Type]. \mforall{}[f:Id {}\mrightarrow{} A {}\mrightarrow{} B {}\mrightarrow{} B]. \mforall{}[init:Id {}\mrightarrow{} bag(B)].
\mforall{}X:EClass(A). \mforall{}es:EO+(Info). \mforall{}e:E.
((\mneg{}\muparrow{}bag-null(init loc(e))) {}\mRightarrow{} (\mdownarrow{}\mexists{}v:B. v \mmember{} State-loc-comb(init;f;X)(e)))
Date html generated:
2016_05_17-AM-10_02_04
Last ObjectModification:
2016_01_17-PM-11_03_41
Theory : classrel!lemmas
Home
Index