Nuprl Lemma : State-loc-comb-single-val0
∀[Info,A,B:Type]. ∀[es:EO+(Info)]. ∀[f:Id ⟶ A ⟶ B ⟶ B]. ∀[X:EClass(A)]. ∀[init:Id ⟶ bag(B)]. ∀[e:E]. ∀[v1,v2:B].
(v1 = v2 ∈ B) supposing
(v1 ∈ State-loc-comb(init;f;X)(e) and
v2 ∈ State-loc-comb(init;f;X)(e) and
single-valued-bag(init loc(e);B) and
single-valued-classrel(es;X;A))
Proof
Definitions occuring in Statement :
State-loc-comb: State-loc-comb(init;f;X)
,
single-valued-classrel: single-valued-classrel(es;X;T)
,
classrel: v ∈ X(e)
,
eclass: EClass(A[eo; e])
,
event-ordering+: EO+(Info)
,
es-loc: loc(e)
,
es-E: E
,
Id: Id
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
apply: f a
,
function: x:A ⟶ B[x]
,
universe: Type
,
equal: s = t ∈ T
,
single-valued-bag: single-valued-bag(b;T)
,
bag: bag(T)
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
implies: P
⇒ Q
,
subtype_rel: A ⊆r B
,
prop: ℙ
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
Latex:
\mforall{}[Info,A,B:Type]. \mforall{}[es:EO+(Info)]. \mforall{}[f:Id {}\mrightarrow{} A {}\mrightarrow{} B {}\mrightarrow{} B]. \mforall{}[X:EClass(A)]. \mforall{}[init:Id {}\mrightarrow{} bag(B)].
\mforall{}[e:E]. \mforall{}[v1,v2:B].
(v1 = v2) supposing
(v1 \mmember{} State-loc-comb(init;f;X)(e) and
v2 \mmember{} State-loc-comb(init;f;X)(e) and
single-valued-bag(init loc(e);B) and
single-valued-classrel(es;X;A))
Date html generated:
2016_05_17-AM-10_02_34
Last ObjectModification:
2015_12_29-PM-03_53_52
Theory : classrel!lemmas
Home
Index