Nuprl Lemma : State-loc-comb-total
∀[Info,B,A:Type]. ∀[f:Id ⟶ A ⟶ B ⟶ B]. ∀[init:Id ⟶ bag(B)]. ∀[X:EClass(A)]. ∀[es:EO+(Info)].
  es-total-class(es;State-loc-comb(init;f;X)) supposing ∀l:Id. (1 ≤ #(init l))
Proof
Definitions occuring in Statement : 
State-loc-comb: State-loc-comb(init;f;X), 
es-total-class: es-total-class(es;X), 
eclass: EClass(A[eo; e]), 
event-ordering+: EO+(Info), 
Id: Id, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
le: A ≤ B, 
all: ∀x:A. B[x], 
apply: f a, 
function: x:A ⟶ B[x], 
natural_number: $n, 
universe: Type, 
bag-size: #(bs), 
bag: bag(T)
Definitions unfolded in proof : 
es-total-class: es-total-class(es;X), 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
gt: i > j, 
subtype_rel: A ⊆r B, 
nat: ℕ, 
decidable: Dec(P), 
or: P ∨ Q, 
le: A ≤ B, 
and: P ∧ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
top: Top, 
prop: ℙ, 
classrel: v ∈ X(e), 
class-ap: X(e), 
eclass: EClass(A[eo; e]), 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
uiff: uiff(P;Q), 
less_than: a < b, 
squash: ↓T, 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Latex:
\mforall{}[Info,B,A:Type].  \mforall{}[f:Id  {}\mrightarrow{}  A  {}\mrightarrow{}  B  {}\mrightarrow{}  B].  \mforall{}[init:Id  {}\mrightarrow{}  bag(B)].  \mforall{}[X:EClass(A)].  \mforall{}[es:EO+(Info)].
    es-total-class(es;State-loc-comb(init;f;X))  supposing  \mforall{}l:Id.  (1  \mleq{}  \#(init  l))
Date html generated:
2016_05_17-AM-10_02_29
Last ObjectModification:
2016_01_17-PM-11_04_11
Theory : classrel!lemmas
Home
Index