Nuprl Lemma : State1-functional
∀[Info,A,B:Type]. ∀[init:Id ⟶ B]. ∀[tr:Id ⟶ A ⟶ B ⟶ B]. ∀[X:EClass(A)].
  ∀es:EO+(Info). (single-valued-classrel(es;X;A) ⇒ State1(init;tr;X) is functional)
Proof
Definitions occuring in Statement : 
State1: State1(init;tr;X), 
es-functional-class: X is functional, 
single-valued-classrel: single-valued-classrel(es;X;T), 
eclass: EClass(A[eo; e]), 
event-ordering+: EO+(Info), 
Id: Id, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
State1: State1(init;tr;X), 
uimplies: b supposing a, 
top: Top, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
prop: ℙ, 
es-functional-class: X is functional, 
single-valued-classrel: single-valued-classrel(es;X;T), 
subtype_rel: A ⊆r B, 
es-total-class: es-total-class(es;X), 
nat: ℕ, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2]
Latex:
\mforall{}[Info,A,B:Type].  \mforall{}[init:Id  {}\mrightarrow{}  B].  \mforall{}[tr:Id  {}\mrightarrow{}  A  {}\mrightarrow{}  B  {}\mrightarrow{}  B].  \mforall{}[X:EClass(A)].
    \mforall{}es:EO+(Info).  (single-valued-classrel(es;X;A)  {}\mRightarrow{}  State1(init;tr;X)  is  functional)
Date html generated:
2016_05_17-AM-10_04_10
Last ObjectModification:
2015_12_29-PM-03_53_10
Theory : classrel!lemmas
Home
Index