Nuprl Lemma : concat-lifting-loc-0_wf
∀[B:Type]. ∀[f:Id ⟶ bag(B)].  (concat-lifting-loc-0(f) ∈ Id ⟶ bag(B))
Proof
Definitions occuring in Statement : 
concat-lifting-loc-0: concat-lifting-loc-0(f), 
Id: Id, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
universe: Type, 
bag: bag(T)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
concat-lifting-loc-0: concat-lifting-loc-0(f), 
select: L[n], 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
nil: [], 
it: ⋅, 
so_lambda: λ2x y.t[x; y], 
top: Top, 
so_apply: x[s1;s2], 
nat: ℕ, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
prop: ℙ, 
guard: {T}, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
subtype_rel: A ⊆r B, 
funtype: funtype(n;A;T), 
eq_int: (i =z j), 
subtract: n - m, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
concat-lifting-loc: concat-lifting-loc(n;bags;loc;f), 
concat-lifting: concat-lifting(n;f;bags), 
concat-lifting-list: concat-lifting-list(n;bags), 
bag-union: bag-union(bbs), 
concat: concat(ll), 
reduce: reduce(f;k;as), 
list_ind: list_ind, 
lifting-gen-list-rev: lifting-gen-list-rev(n;bags), 
single-bag: {x}, 
cons: [a / b], 
append: as @ bs
Latex:
\mforall{}[B:Type].  \mforall{}[f:Id  {}\mrightarrow{}  bag(B)].    (concat-lifting-loc-0(f)  \mmember{}  Id  {}\mrightarrow{}  bag(B))
Date html generated:
2016_05_17-AM-09_15_46
Last ObjectModification:
2016_01_17-PM-11_14_34
Theory : classrel!lemmas
Home
Index